Extremes for deterministic and random dynamical systems

Jorge Milhazes Freitas
jmfreita@fc.up.pt
http://www.fc.up.pt/pessoas/jmfreita

Part of the work was developed with Ana Moreira Freitas and Mike Todd and another part with Hale Aytaç and Sandro Vaienti
The setting

We will consider stochastic processes arising from dynamical systems (both deterministic and randomly perturbed systems). Namely, \(X_0, X_1, X_2, \ldots \) will be such that:

\[
X_n := \varphi \circ T^n = \varphi \circ T \circ \ldots \circ T
\]

where the discrete time dynamical system \((\mathcal{X}, \mathcal{B}, \mathbb{P}, T)\) will denote two different but interrelated settings throughout the paper and \(\varphi : \mathcal{X} \rightarrow \mathbb{R} \cup \{+\infty\} \), is just a measurable observable that achieves a global maximum at some \(\zeta \in \mathcal{X} \).

\(\mathcal{X} \) is a topological space, \(\mathcal{B} \) is the Borel \(\sigma \)-algebra, \(T : \mathcal{X} \rightarrow \mathcal{X} \) is a measurable map and \(\mathbb{P} \) is a \(T \)-invariant probability measure, i.e., \(\mathbb{P}(T^{-1}(B)) = \mathbb{P}(B) \), for all \(B \in \mathcal{B} \).

The \(T \) invariance of \(\mathbb{P} \) implies that \(X_0, X_1, \ldots \) is stationary.
Deterministic dynamics

- $X = \mathcal{M}$ is a compact Riemannian manifold
- \mathcal{B} is the Borel σ-algebra
- $T = f : \mathcal{M} \to \mathcal{M}$ is a piecewise differentiable map
- $\mathbb{P} = \mu$ is an f-invariant probability
- Orbits: $x, f(x), f^2(x) := f(f(x)), \ldots$

$f : [0, 1] \to [0, 1]$

$f(x) = 2x \mod 1$
Deterministic dynamics

- $\mathcal{X} = \mathcal{M}$ is a compact Riemannian manifold
- \mathcal{B} is the Borel σ-algebra
- $T = f : \mathcal{M} \to \mathcal{M}$ is a piecewise differentiable map
- $\mathbb{P} = \mu$ is an f-invariant probability
- Orbits: $x, f(x), f^2(x) := f(f(x)), \ldots$

$$f : [0, 1] \to [0, 1]$$
$$f(x) = 2x \mod 1$$
Deterministic dynamics

- $\mathcal{X} = \mathcal{M}$ is a compact Riemannian manifold
- \mathcal{B} is the Borel σ-algebra
- $T = f : \mathcal{M} \to \mathcal{M}$ is a piecewise differentiable map
- $\mathbb{P} = \mu$ is an f-invariant probability
- Orbits: $x, f(x), f^2(x) := f(f(x)), \ldots$

$f : [0, 1] \to [0, 1]$
$f(x) = 2x \mod 1$
Random dynamics

- Let $\mathcal{M} = \mathbb{T}^d = \mathbb{R}^d/\mathbb{Z}^d$, for some $d \in \mathbb{N}$ and consider $f : \mathcal{M} \to \mathcal{M}$.
- Let θ_ε be a probability supported on $B_\varepsilon(0) := \{ y \in \mathcal{M} : \text{dist}(x, y) < \varepsilon \}$ and such that $\theta_\varepsilon = g_\varepsilon \text{Leb}$ and $0 < \underline{g}_\varepsilon \leq g_\varepsilon \leq \overline{g}_\varepsilon < \infty$.
- For $\omega \in B_\varepsilon(0)$ we define the additive perturbation f_ω by
 \[f_\omega(x) = f(x) + \omega. \] (1)
- Let W_1, W_2, \ldots be a sequence of iid r.v. taking values on $B_\varepsilon(0)$, with common distribution given by the probability θ_ε.
- Let $\Omega = B_\varepsilon(0)^\mathbb{N}$ and $\theta_\varepsilon^\mathbb{N}$ be the product measure defined on Ω.
- Given a point $x \in \mathcal{M}$ and $\omega = (\omega_1, \omega_2, \ldots) \in \Omega$, we define the random orbit of x as $x, f_\omega(x), f_\omega^2(x), \ldots$ where:
 \[f_\omega^n(x) = f_{\omega_n} \circ f_{\omega_{n-1}} \circ \cdots \circ f_{\omega_1}(x), \]
 with f_{ω}^0 being the identity map on \mathcal{M}.
Random dynamics

Let \(\mathcal{M} = \mathbb{T}^d = \mathbb{R}^d / \mathbb{Z}^d \), for some \(d \in \mathbb{N} \) and consider \(f : \mathcal{M} \rightarrow \mathcal{M} \).

Let \(\theta_\varepsilon \) be a probability supported on \(B_\varepsilon(0) := \{ y \in \mathcal{M} : \text{dist}(x, y) < \varepsilon \} \) and such that \(\theta_\varepsilon = g_\varepsilon \text{Leb} \) and \(0 < g_\varepsilon \leq g_\varepsilon \leq \overline{g_\varepsilon} < \infty \).

For \(\omega \in B_\varepsilon(0) \) we define the additive perturbation \(f_\omega \) by

\[
f_\omega(x) = f(x) + \omega. \tag{1}\]

Let \(W_1, W_2, \ldots \) be a sequence of iid r.v. taking values on \(B_\varepsilon(0) \), with common distribution given by the probability \(\theta_\varepsilon \).

Let \(\Omega = B_\varepsilon(0)^\mathbb{N} \) and \(\theta_\varepsilon^\mathbb{N} \) be the product measure defined on \(\Omega \).

Given a point \(x \in \mathcal{M} \) and \(\omega = (\omega_1, \omega_2, \ldots) \in \Omega \), we define the random orbit of \(x \) as \(x, f_\omega(x), f_\omega^2(x), \ldots \) where:

\[
f_\omega^n(x) = f_{\omega_n} \circ f_{\omega_{n-1}} \circ \cdots \circ f_{\omega_1}(x),
\]

with \(f_\omega^0 \) being the identity map on \(\mathcal{M} \).
Random dynamics

Let $\mathcal{M} = \mathbb{T}^d = \mathbb{R}^d / \mathbb{Z}^d$, for some $d \in \mathbb{N}$ and consider $f : \mathcal{M} \to \mathcal{M}$.

Let θ_ε be a probability supported on $B_\varepsilon(0) := \{y \in \mathcal{M} : \text{dist}(x, y) < \varepsilon\}$ and such that $\theta_\varepsilon = g_\varepsilon \text{Leb}$ and $0 < g_\varepsilon \leq g_\varepsilon \leq \overline{g_\varepsilon} < \infty$.

For $\omega \in B_\varepsilon(0)$ we define the additive perturbation f_ω by

$$f_\omega(x) = f(x) + \omega. \quad (1)$$

Let W_1, W_2, \ldots be a sequence of iid r.v. taking values on $B_\varepsilon(0)$, with common distribution given by the probability θ_ε.

Let $\Omega = B_\varepsilon(0)^\mathbb{N}$ and $\theta_\varepsilon^{\mathbb{N}}$ be the product measure defined on Ω.

Given a point $x \in \mathcal{M}$ and $\omega = (\omega_1, \omega_2, \ldots) \in \Omega$, we define the random orbit of x as $x, f_\omega(x), f_\omega^2(x), \ldots$ where:

$$f_\omega^n(x) = f_{\omega_n} \circ f_{\omega_{n-1}} \circ \cdots \circ f_{\omega_1}(x),$$

with f_{ω_0} being the identity map on \mathcal{M}.
Random dynamics

Let $\mathcal{M} = \mathbb{T}^d = \mathbb{R}^d / \mathbb{Z}^d$, for some $d \in \mathbb{N}$ and consider $f : \mathcal{M} \to \mathcal{M}$.

Let θ_ε be a probability supported on $B_\varepsilon(0) := \{y \in \mathcal{M} : \text{dist}(x, y) < \varepsilon\}$ and such that $\theta_\varepsilon = g_\varepsilon \text{Leb}$ and $0 < g_\varepsilon \leq g_\varepsilon \leq g_\varepsilon < \infty$.

For $\omega \in B_\varepsilon(0)$ we define the additive perturbation f_ω by

$$f_\omega(x) = f(x) + \omega.$$ \hfill (1)

Let W_1, W_2, \ldots be a sequence of iid r.v. taking values on $B_\varepsilon(0)$, with common distribution given by the probability θ_ε.

Let $\Omega = B_\varepsilon(0)^\mathbb{N}$ and $\theta_\varepsilon^\mathbb{N}$ be the product measure defined on Ω.

Given a point $x \in \mathcal{M}$ and $\omega = (\omega_1, \omega_2, \ldots) \in \Omega$, we define the random orbit of x as $x, f_\omega(x), f_\omega^2(x), \ldots$ where:

$$f_\omega^n(x) = f_{\omega_n} \circ f_{\omega_{n-1}} \circ \cdots \circ f_{\omega_1}(x),$$

with $f_{\omega_0}^0$ being the identity map on \mathcal{M}.
Random dynamics

Let $\mathcal{M} = \mathbb{T}^d = \mathbb{R}^d / \mathbb{Z}^d$, for some $d \in \mathbb{N}$ and consider $f : \mathcal{M} \to \mathcal{M}$.

Let θ_ε be a probability supported on $B_\varepsilon(0) := \{ y \in \mathcal{M} : \text{dist}(x, y) < \varepsilon \}$ and such that $\theta_\varepsilon = g_\varepsilon \text{Leb}$ and $0 < g_\varepsilon \leq g_\varepsilon \leq \underline{g_\varepsilon} < \infty$.

For $\omega \in B_\varepsilon(0)$ we define the additive perturbation f_ω by

$$f_\omega(x) = f(x) + \omega.$$ \hspace{1cm} (1)

Let W_1, W_2, \ldots be a sequence of iid r.v. taking values on $B_\varepsilon(0)$, with common distribution given by the probability θ_ε.

Let $\Omega = B_\varepsilon(0)^\mathbb{N}$ and $\theta_\varepsilon^\mathbb{N}$ be the product measure defined on Ω.

Given a point $x \in \mathcal{M}$ and $\omega = (\omega_1, \omega_2, \ldots) \in \Omega$, we define the random orbit of x as $x, f_\omega(x), f_\omega^2(x), \ldots$ where:

$$f_\omega^n(x) = f_{\omega_n} \circ f_{\omega_{n-1}} \circ \cdots \circ f_{\omega_1}(x),$$

with f_ω^0 being the identity map on \mathcal{M}.
Random dynamics

- Let $\mathcal{M} = \mathbb{T}^d = \mathbb{R}^d / \mathbb{Z}^d$, for some $d \in \mathbb{N}$ and consider $f : \mathcal{M} \to \mathcal{M}$.
- Let θ_ε be a probability supported on $B_\varepsilon(0) := \{ y \in \mathcal{M} : \text{dist}(x, y) < \varepsilon \}$ and such that $\theta_\varepsilon = g_\varepsilon \text{Leb}$ and $0 < g_\varepsilon \leq g_\varepsilon \leq \overline{g}_\varepsilon < \infty$.
- For $\omega \in B_\varepsilon(0)$ we define the additive perturbation f_ω by
 \[f_\omega(x) = f(x) + \omega. \]
 (1)
- Let W_1, W_2, \ldots be a sequence of iid r.v. taking values on $B_\varepsilon(0)$, with common distribution given by the probability θ_ε.
- Let $\Omega = B_\varepsilon(0)^\mathbb{N}$ and $\theta_\varepsilon^\mathbb{N}$ be the product measure defined on Ω.
- Given a point $x \in \mathcal{M}$ and $\omega = (\omega_1, \omega_2, \ldots) \in \Omega$, we define the random orbit of x as $x, f_\omega(x), f_\omega^2(x), \ldots$ where:
 \[f^n_\omega(x) = f_{\omega_n} \circ f_{\omega_{n-1}} \circ \cdots \circ f_{\omega_1}(x), \]
 with f^0_ω being the identity map on \mathcal{M}.
Deterministic representation of random perturbations

Let

\[S : \mathcal{M} \times \Omega \longrightarrow \mathcal{M} \times \Omega \]

\[(x, \omega) \longmapsto (f_{\omega_1}(x), \sigma(\omega)),\]

where \(\sigma : \Omega \rightarrow \Omega\) is the shift \(\sigma(\omega) = \sigma(\omega_1, \omega_2, \ldots) = (\omega_2, \omega_3, \ldots)\).

Hence, the random evolution can fit the original model \((\mathcal{X}, \mathcal{B}, \mathbb{P}, T)\) by taking:

- \(\mathcal{X} = \mathcal{M} \times \Omega\)
- \(\mathcal{B}\) is the respective product \(\sigma\)-algebra
- \(\mathbb{P} = \mu_\varepsilon \times \theta_\varepsilon^\mathbb{N}\)
- the system is then given by the skew product map \(T = S\).
Definition (Decay of correlations)

Let C_1, C_2 be two Banach spaces of real functions. We denote the correlation of non-zero functions $\phi \in C_1$ and $\psi \in C_2$ w.r.t. a measure \mathbb{P} as

$$\text{Cor}_{\mathbb{P}}(\phi, \psi, n) := \frac{1}{\|\phi\|_{C_1} \|\psi\|_{C_2}} \left| \int \phi(\psi \circ T^n) d\mathbb{P} - \int \phi d\mathbb{P} \int \psi d\mathbb{P} \right|.$$

We say that we have decay of correlations, w.r.t. \mathbb{P}, for observables in C_1 against observables in C_2 if, for all $\phi \in C_1$, $\psi \in C_2$ we have

$$\text{Cor}_{\mathbb{P}}(\phi, \psi, n) \to 0, \quad \text{as } n \to \infty.$$

We say that we have decay of correlations against L^1 observables whenever $C_2 = L^1(\text{Leb})$ and $\|\psi\|_{C_2} = \|\psi\|_1 = \int |\psi| \, d\text{Leb}$.
Stochastic processes arising from deterministic/random dynamical systems

Let \(\varphi : \mathcal{M} \rightarrow \mathbb{R} \cup \{+\infty\} \).

In the deterministic setting \(X_0, X_1, X_2, \ldots \) is given by

\[
X_n = \varphi \circ f^n, \quad \text{for each } n \in \mathbb{N}.
\]

(3)

In the random dynamics case, the process will be

\[
X_n = \varphi \circ f^n, \quad \text{for each } n \in \mathbb{N},
\]

(4)

which can also be written as \(X_n = \bar{\varphi} \circ S^n \), where

\[\bar{\varphi} : \mathcal{M} \times \Omega \rightarrow \mathbb{R} \cup \{+\infty\}, \text{ is given by } \varphi(x, \omega) = \varphi(x).\]

We assume that the \(\varphi : \mathcal{M} \rightarrow \mathbb{R} \cup \{\pm \infty\} \) achieves a global maximum at \(\zeta \in \mathcal{M} \) (we allow \(\varphi(\zeta) = +\infty \)).

We also assume that \(\varphi \) and \(\mathbb{P} \) are sufficiently regular so that, for \(u \) sufficiently high, the event \(U(u) = \{ X_0 > u \} \) corresponds to a topological ball centred at \(\zeta \). Moreover, the quantity \(\mathbb{P}(U(u)) \), as a function of \(u \), varies continuously on a neighbourhood of \(u_F := \sup \{ x : F(x) < 1 \} \), where \(F(x) = \mathbb{P}(X_0 \leq x) \).
Extreme Value Laws

We have an exceedance of the level $u \in \mathbb{R}$ at time $j \in \mathbb{N}$ if the event $\{X_j > u\}$ occurs. Define a new sequence of random variables (r.v.) M_1, M_2, \ldots given by

$$M_n = \max\{X_0, \ldots, X_{n-1}\}.$$ (5)

Definition

We say that we have an EVL for M_n if there is a d.f. $H : \mathbb{R} \rightarrow [0, 1]$, with $H(0) = 0$ and, for all $\tau > 0$, there exists a sequence of levels $u_n = u_n(\tau)$, s.t.

$$n \mathbb{P}(X_0 > u_n) \rightarrow \tau, \text{ as } n \rightarrow \infty,$$ (6)

and for which the following holds:

$$\mathbb{P}(M_n \leq u_n) \rightarrow \bar{H}(\tau), \text{ as } n \rightarrow \infty.$$ (7)

When $\bar{H}(\tau) = e^{-\theta \tau}$, where $0 \leq \theta \leq 1$, we say we have an Extremal Index θ.
An extremal dichotomy

We begin with a dichotomy that was first realised to exist in [FFT12]. The actual statement we present here comes from the paper [AFV12] and uses the results of [FFT13] to cover the case of periodic points.

Theorem

Consider a continuous dynamical system \((M, B, \mu, f)\) for which there exists a Banach space \(C\) such that for all \(\phi \in C\) and \(\psi \in L^1(\mu)\),
\[
\text{Cor}_\mu(\phi, \psi, n) \leq Cn^{-2},
\]
where \(C > 0\) is a constant independent of both \(\phi, \psi\). Let \(X_0, X_1, \ldots\) be given by (3), where \(\varphi\) achieves a global maximum at \(\zeta\). Let \(u_n\) be such that (6) holds. We assume that there exists \(C' > 0\) such that for all \(n\) we have \(\mathbf{1}_{U(u_n)} \in C, \|\mathbf{1}_{U(u_n)}\|_C \leq C'\).

- If \(\zeta\) is a non-periodic point, then there exists an EVL for \(M_n\) and
 \(H(\tau) = 1 - e^{-\tau}\).

- If \(\zeta\) is a repelling periodic point of prime period \(p\), then there exists an EVL for \(M_n\) and
 \(H(\tau) = 1 - e^{-\theta \tau}\), where
 \(\theta = \lim_{n \to \infty} \mathbb{P}(X_0 > u_n, X_p \leq u_n | X_0 > u_n)\).
Smoothing effect of adding noise on the Extremal dichotomy

Theorem ([AFV12])

Consider a dynamical system \((\mathcal{M} \times \Omega, \mathcal{B}, \mu_\varepsilon \times \theta_\varepsilon^N, S)\), where \(\mathcal{M} = \mathbb{T}^d\), for some \(d \in \mathbb{N}\), \(f : \mathcal{M} \to \mathcal{M}\) is a deterministic system which is randomly perturbed as in (1) and \(S\) is the skew product map defined in (2). Assume that there exists \(\eta > 0\) such that \(\text{dist}(f(x), f(y)) \leq \eta \text{dist}(x, y)\), for all \(x, y \in \mathcal{M}\). Assume also that the measure \(\mu_\varepsilon\) is such that \(\mu_\varepsilon = h_\varepsilon \text{Leb}\), with \(0 < h_\varepsilon \leq h_\varepsilon \leq \overline{h}_\varepsilon < \infty\).

Suppose that there exists a Banach space \(\mathcal{C}\) of real valued functions defined on \(\mathcal{M}\) such that for all \(\phi \in \mathcal{C}\) and \(\psi \in L^1(\mu_\varepsilon)\), \(\text{Cor}_{\mu_\varepsilon \times \theta_\varepsilon^N}(\phi, \psi, n) \leq Cn^{-2}\), where \(C > 0\) is a constant independent of both \(\phi, \psi\).

Let \(u_n\) be such that (6) holds and assume that there exists \(C' > 0\) such that for all \(n\) we have \(\mathbf{1}_{U(u_n)} \in \mathcal{C}\), \(\|\mathbf{1}_{U(u_n)}\|_{\mathcal{C}} \leq C'\). For any point \(\zeta \in \mathcal{M}\), consider that \(X_0, X_1, \ldots\) is defined as in (4), then there exists an EVL for \(M_n\) such that \(H(\tau) = 1 - e^{-\tau}\).

Workshop on Risk Analysis and Extreme Values, Paris, 2005
Conference "Extreme Value Theory and Laws of Rare Events"

Centre International de Rencontres Mathématiques (CIRM)
Luminy, Marseille, France
From 14-07-2014 to 18-07-2014
http://www.cirm.univ-mrs.fr/index.html/

Organisers
- A.C.M. Freitas
- J.M. Freitas
- M. Todd
- S. Vaienti
Conference "Extreme Value Theory and Laws of Rare Events"

Centre International de Rencontres Mathématiques (CIRM)
Luminy, Marseille, France
From 14-07-2014 to 18-07-2014
http://www.cirm.univ-mrs.fr/index.html/

Scientific Committee
- P. Collet
- Michael Ghil
- Ivette Gomes
- Valerio Lucarini
- Matthew Nicol
- Holger Rootzén
Conference "Extreme Value Theory and Laws of Rare Events"

Centre International de Rencontres Mathématiques (CIRM)
Luminy, Marseille, France
From 14-07-2014 to 18-07-2014
http://www.cirm.univ-mrs.fr/index.html/

Scientific Committee
- P. Collet
- Michael Ghil
- Ivette Gomes
- Valerio Lucarini
- Matthew Nicol
- Holger Rootzén
Conference "Extreme Value Theory and Laws of Rare Events"

Centre International de Rencontres Mathématiques (CIRM)
Luminy, Marseille, France
From 14-07-2014 to 18-07-2014
http://www.cirm.univ-mrs.fr/index.html/

Scientific Committee
- P. Collet
- Michael Ghil
- Ivette Gomes
- Valerio Lucarini
- Matthew Nicol
- Holger Rootzén